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Abstract We investigate the properties of the collision operator Q associated to the lin-
ear Boltzmann equation for dissipative hard-spheres arising in granular gas dynamics. We
establish that, as in the case of non-dissipative interactions, the gain collision operator is
an integral operator whose kernel is made explicit. One deduces from this result a com-
plete picture of the spectrum of Q in an Hilbert space setting, generalizing results from
T. Carleman (Publications Scientifiques de l’Institut Mittag-Leffler, vol. 2, 1957) to granular
gases. In the same way, we obtain from this integral representation of Q+ that the semigroup
in L1(R3 × R

3, dx ⊗ dv) associated to the linear Boltzmann equation for dissipative hard
spheres is honest generalizing known results from Arlotti (Acta Appl. Math. 23:129–144,
1991).

Keywords Granular gas dynamics · Linear Boltzmann equation · Detailed balance law ·
Spectral theory · C0-semigroup

1 Introduction

We deal in this paper with the linear Boltzmann equation for dissipative interactions mod-
eling the evolution of a granular gas, undergoing inelastic collisions with its underlying
medium. Actually, we shall see in the sequel that there is no contrast between the scattering
theory of granular gases and that of classical (elastic) gases. This may seem quite surprising
if one has in mind the fundamental differences that may be emphasized between the nonlin-
ear kinetic theory of granular gases and that of classical gases, as briefly recalled in the next
lines.
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1.1 Granular Gas Dynamics: Linear and Nonlinear Models

Let us begin by recalling the general features of the kinetic description of granular gas
dynamics that can be recovered from the monograph [4] or the more mathematically oriented
survey [23]. If f (x, v, t) denotes the distribution function of granular particles with position
x ∈ R

3 and velocity v ∈ R
3 at time t ≥ 0, then the evolution of f (x, v, t) is governed by the

following generalization of Boltzmann equation

∂tf (x, v, t) + v · ∇xf (x, v, t) = C(f )(x, v, t), (1.1)

with initial condition f (x, v,0) = f0(x, v) ∈ L1(R3 × R
3, dx ⊗ dv), where the right-hand

side C(f ) models the collision phenomena and depends on the phenomenon we describe.
In the nonlinear description, the collision operator C(f ) =: B[f,f ] is a quadratic oper-

ator modeling the binary collision phenomena between self-interacting particles. For hard-
spheres interactions, it reads

B[f,f ](v) =
∫

R3×S2
|q · n|

[
1

ε2
f (x, v�, t)f (x,w�, t) − f (x, v, t)f (x,w, t)

]
dwdn,

where q is the relative velocity, q = v − w. The microscopic velocities (v�,w�) are the
pre-collisional velocities of the so-called inverse collision, which results in (v,w) as post-
collisional velocities. The main peculiarity of the kinetic description of granular gas is the
inelastic character of the microscopic collision mechanism which induces that part of the
total kinetic energy is dissipated. This energy dissipation might be due to the roughness of
the surface or just to a non-perfect restitution and is measured through a restitution coeffi-
cient 0 < ε < 1 (which we assume here to be constant for simplicity, see Remark 1.2). As
a consequence, the collision phenomenon is a non microreversible process. Generally, we
assume that the energy dissipation does not affect the conservation of momentum. There-
fore, in the homogeneous setting, i.e. when f0(x, v) = f0(v) is independent of the position,
the number density of the gas is constant while the bulk velocity is conserved. However, the
temperature of the gas

ϑ(t) = 1

3

∫
R3

|v|2f (t, v)dv

continuously decreases (cooling of granular gas). As a consequence, the stationary state of
the inelastic collision operator B is a given Dirac mass. However, the homogeneous Boltz-
mann equation for granular gases exhibits self-similar solution (homogeneous cooling state)
[8, 17]. Note the important contrast with the classical kinetic theory, i.e. when ε = 1, for
which it is well-known that the steady state of the collision operator is a Maxwellian distri-
bution.

The linear Boltzmann equation for dissipative interactions concerns dilute particles (test
particles with negligible mutual interactions) immersed in a fluid at thermal equilibrium
[14, 16, 22]. The total kinetic energy is dissipated when the dilute particles collide with
particles of the host fluid. Such physical models are well-suited to the study of the dynamics
of a mixture of impurities in a gas [5, 9] for which the background is in thermodynamic
equilibrium and the polluting particles are sufficiently few. We refer the reader to [11] and
the survey [10] for more details on the theory of granular gaseous mixtures. Assuming the
fluid at thermal equilibrium and neglecting the mutual interactions of both the test and dilute
particles, the collision operator C(f ) = Q(f ) is a linear scattering operator given by

Q(f ) = B[f,M1] =
∫

R3×S2
|q · n|

[
1

ε2
f (x, v�, t)M1(w�) − f (x, v, t)M1(w)

]
dwdn (1.2)
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where M1 stands for the distribution function of the host fluid. Note that in such a scattering
model, the microscopic masses of the dilute particles m and that of the host particles m1 can
be different. We will assume throughout this paper that the distribution function of the host
fluid is a given normalized Maxwellian function:

M1(v) =
(

m1

2πϑ1

)3/2

exp

{
−m1(v − u1)

2

2ϑ1

}
, v ∈ R

3,

where u1 ∈ R
3 is the given bulk velocity and ϑ1 > 0 is the given effective temperature of

the host fluid. It can be shown in this case that the number density of the dilute gas is
the unique conserved macroscopic quantity (as in the elastic case). The temperature is still
not conserved but it remains bounded away from zero, which prevents the solution to the
linear Boltzmann equation to converge towards a Dirac mass. This strongly contrasts to the
nonlinear description and suggests that the linear scattering model associated with granular
gases does not contrast too much with the one associated with classical gases.

The first mathematical result in this direction is the following one according to which, as
in the classical case, the unique steady state of Q remains Gaussian. The fact that the linear
Boltzmann equation still possesses a stationary Maxwellian velocity distribution was first
obtained in [16] and we refer to [14] for a complete proof (existence and uniqueness) for
hard-spheres model (see also [22] for a version of this result for Maxwell molecules):

Theorem 1.1 The Maxwellian velocity distribution:

M(v) =
(

m

2πϑ#

)3/2

exp

{
−m(v − u1)

2

2ϑ#

}
, v ∈ R

3,

with ϑ# = (1+ε)m

2m+(3+ε)m1
ϑ1 is the unique equilibrium state of Q with unit mass.

Remark 1.2 Note that, if one does not assume the restitution coefficient ε to be constant
(see [4] for the general expression of non-constant restitution coefficient ε = ε(q) in the
case, e.g., of visco-elastic spheres) then the nature of the equilibrium state of Q is still an
open question: it is not known whether such a steady state is a Maxwellian or not. Conse-
quently, it is still not clear that linear inelastic scattering models behave like elastic ones. For
this reason, we shall restrict here our study of the linear Boltzmann equation to a constant
restitution coefficient. We also point out that, if the distribution function of the host fluid
M1 is not of Gaussian type, the explicit expression of the equilibrium state of Q is an open
question to our knowledge.

The existence and uniqueness of such an equilibrium state allows to establish a linear
version of the famous H -Theorem. Precisely, for any convex C1-function Φ : R

+ → R, one
can define the associated entropy functional as

HΦ(f |M) =
∫

R3
M(v)Φ

(
f (v)

M(v)

)
dv. (1.3)

Theorem 1.3 (H -Theorem [14, 20]) Let f0(v) be a space homogeneous distribution func-
tion with unit mass and finite entropy, i.e. HΦ(f0|M) < ∞. Then,

d

dt
HΦ(f (t)|M) ≤ 0 (t ≥ 0), (1.4)

where f (t) stands for the (unique) solution to (1.1) in L1(R3, dv).
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Note that such a result is valid for any scattering operator with positive kernel and pos-
itive equilibrium [20]. As an important consequence, it can be shown by suitable compact-
ness arguments that any solution to the Boltzmann equation (1.1) (with unit mass) converges
towards the Maxwellian equilibrium M. Note also that, for the nonlinear Boltzmann equa-
tion for dissipative interactions, the temperature is a trivial Lyapunov functional leading to
the convergence of any solution towards a Dirac mass. However, the construction of a Lya-
punov functional in the self-similar variables allowing relaxation towards the homogeneous
cooling state is still an open question (see, e.g. [17] for related problems).

To summarize, the steady state of the linear collision operator for dissipative interactions
has the same nature (a Maxwellian distribution) as the one corresponding to non-dissipative
interactions. Moreover, as in the classical case, by virtue of the H -Theorem, such a steady
state attracts any solution to the space homogeneous Boltzmann equation (1.1). This seems
to indicate that most of the properties of the linear Boltzmann equation for elastic interac-
tions remain valid for inelastic scattering models. It is the main subject of this paper to make
precise and confirm such an indication and the key ingredient will be the derivation of an
integral representation of the gain part of the collision operator.

1.2 Main Results

The main concern of our paper is the derivation of a suitable representation of the gain part
of the collision operator Q as an integral operator with explicit kernel. Precisely, the linear
collision operator Q can be split into Q(f ) = Q+(f ) − Q−(f ), where the gain part is

Q+(f )(v) = ε−2
∫

R3×S2
|q · n|f (v�)M1(w�)dwdn

while

Q−(f )(v) =
∫

R3×S2
|q · n|f (v)M1(w)dwdn = σ(v)f (v)

where the collision frequency σ(v) is given by σ(v) = ∫
R3×S2 |q ·n|M1(w)dwdn. It is well-

known that, for non-dissipative interactions, i.e. when ε = 1, the gain part Q+ can be written
as an integral operator with explicit kernel [6, 15] (see also [7, 12] for similar results for the
linearized Boltzmann equation). We prove that such a representation is still valid in the
dissipative case:

Theorem 1.4 If f ≥ 0 is such that σ(v)f (v) ∈ L1(R3, dv), then

Q+(f )(v) =
∫

R3
k(v, v′)f (v′)dv′

where the integral kernel k(v, v′) can be made explicit (see (2.2)).

Actually, most important is the fact that the integral kernel k(v, v′) turns out to be very
similar to that obtained in the classical case (see for instance [6, 15]), the only changes
standing in some explicit numerical constants. Moreover, as we shall see, the kernel k(v, v′)
and the Maxwellian distribution M satisfy the following detailed balance law:

k(v, v′)M(v′) = k(v′, v)M(v), v, v′ ∈ R
3,



J Stat Phys (2007) 129: 517–536 521

that allows us to recover Theorem 1.1 in a direct way. Recall that, in [14], the Gaussian
nature of the steady state of Q was obtained by replacing Q by its grazing collision limit.

We derive from these two results some important consequences on the linear Boltzmann
equation (1.1) with C = Q. The applications are dealing with the space dependent version
of (1.1) as well as with the space homogeneous version of it. The first one concerns the
spectral properties of the Boltzmann collision operator in its natural Hilbert space setting.

1.3 Spectral Properties of the Boltzmann Operator in L2(M−1)

Applying the above H -Theorem 1.3 with the quadratic convex function Φ(x) = (x − 1)2,
one sees that a natural function space for the study of the homogeneous linear Boltzmann
equation is the weighted space L2(M−1). Now, from Theorem 1.4, it is possible to prove
that the gain collision operator Q+ is compact in L2(M−1). This compactness result has
important consequences on the structure of the spectrum of Q as an operator in L2(M−1).
Precisely, from Weyl’s Theorem, the spectrum of Q in this space is given by the (essen-
tial) range of the collision frequency σ(·) and of isolated eigenvalues with finite algebraic
multiplicities. Since λ = 0 is a simple eigenvalue of Q (its associated null space is spanned
by M), this leads to the existence of a positive spectral gap. In turns, one proves that any
solution to the space-homogeneous linear Boltzmann equation (1.1) converges at an expo-
nential rate towards the equilibrium. These spectral results are technical generalizations of
some of the fundamental results of T. Carleman [6], but are new in the context of granular
gas dynamics.

1.4 Honest Solutions for Hard-Spheres Model

It is easily seen that, for any nonnegative f ,
∫

R3
Q+(f )(v)dv =

∫
R3

σ(v)f (v)dv, (1.5)

i.e. the collision operator Q is conservative. Then, formally, any nonnegative solution
f (x, v, t) to (1.1) (with C = Q) should satisfy the following mass conservation equation:

∫
R3×R3

f (x, v, t)dxdv =
∫

R3×R3
f (x, v,0)dxdv, ∀t > 0. (1.6)

It is the main concern of Sect. 4 to prove that such a formal mass conservation property
holds true for any nonnegative initial datum f (x, v,0) ∈ L1(R3 × R

3). As well documented
in the monograph [3], this is strongly related to the honesty of the C0-semigroup governing
equation (1.1). More precisely, if we denote by T0 the streaming operator:

D(T0) = {f ∈ X ,v · ∇xf ∈ X}, T0f = −v · ∇xf,

it is not difficult to see that there exists some extension G of T0 + Q that generates
a C0-semigroup of contractions (Z(t))t≥0 in X = L1(R3 × R

3). According to the so-called
“sub-stochastic perturbation” theory, developed in [1, 3, 25], it can be proved that

∫
R3×R3

Z(t)f (x, v)dxdv =
∫

R3×R3
f (x, v)dxdv, ∀f ∈ X, f ≥ 0

if and only if G is the closure of the full transport operator: G = T0 + Q. We show in Sect. 4
that the latter holds. To do so, we shall use the integral representation (Theorem 1.4) in order
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to apply some of the results of [1] (see also [3, Chap. 10]) dealing with the classical linear
Boltzmann equation.

1.5 Organization of the Paper

We derive in Sect. 2 the integral representation of Q+ (Theorem 2.1) as well as some of its
immediate consequences concerning the explicit expression of the collision frequency. We
also recover Theorem 1.1 through a detailed balance law. Section 3 is devoted to the study of
the collision operator Q in the narrow space L2(M−1(v)dv) and its spectral consequences.
In Sect. 4 we apply the results of Sect. 2 as well as some known facts about the classical
linear Boltzmann equation [1, 3] to the honesty of the solutions to the Boltzmann equation
for dissipative hard-spheres.

2 Integral Representation of the Gain Operator

Let us consider the gain operator for dissipative hard-spheres:

Q+(f )(v) = ε−2
∫

R3×S2
|q · n|f (v�)M1(w�)dwdn

and let σ(v) be the corresponding collision frequency:

σ(v) =
∫

R3×S2
|q · n|M1(w)dwdn, v ∈ R

3.

Recall that M1 is a Maxwellian distribution function with bulk velocity u1 and effective
temperature ϑ1. We recall here the general microscopic description of the pre-collisional
velocities (v�,w�) which result in (v,w) after collision. For a constant restitution coefficient
0 < ε < 1, one has [4, 23]

{
v� = v − 2α

1−β

1−2β
[q · n]n,

w� = w + 2(1 − α)
1−β

1−2β
[q · n]n;

where q = v − w, α is the mass ratio and β denotes the inelasticity parameter

α = m1

m + m1
, β = 1 − ε

2
.

We show in this section that, as it occurs for the classical Boltzmann equation, Q+ turns
out to be an integral operator with explicit kernel. The proof of such a result is based on
well-known tools from the linear elastic scattering theory [6, 12, 15] while, in the dissipative
case, similar calculations have been performed to derive a Carleman representation of the
nonlinear Boltzmann operator in [17].

Theorem 2.1 (Integral representation of Q+) For any f ∈ L1(R3 × R
3, dx ⊗ σ(v)dv),

Q+f (x, v) = 1

2ε2γ 2

∫
R3

f (x, v′)k(v, v′)dv′, (2.1)
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where

k(v, v′) =
(

m1

2πϑ1

)1/2

|v − v′|−1

× exp

{
− m1

8ϑ1

(
(1 + μ)|v − v′| + |v − u1|2 − |v′ − u1|2

|v − v′|
)2}

(2.2)

with μ = − 2α(1−β)−1
α(1−β)

> 0 and γ = α
1−β

1−2β
.

Proof The local (in x) nature of Q+ is obvious and we can restrict ourselves to prove the
result for a function f ∈ L1(R3, σ (v)dv) that does not depend on x. Set γ = α

1−β

1−2β
and

γ = (1 − α)
1−β

1−2β
so that

v� = v − 2γ [q · n]n and w� = w + 2γ [q · n]n.

The following formula, for smooth ϕ:

∫
S+

(q · n)ϕ((q · n)n)dn = |q|
4

∫
S2

ϕ

(
q − |q|σ

2

)
dσ = 1

2

∫
R3

δ(2x · q + x2)ϕ(−x/2)dx.

applied to

ϕ(x) = f (v − 2γ x)M1(w + 2γ x)

yields

Q+f (v) = ε−2
∫

R3×R3
δ(2x · q + x2)f (v + γ x)M1(w − γ x)dwdx.

The change of variables x �→ v′ = v + γ x leads to

Q+f (v) = ε−2γ −3
∫

R3×R3
δ(2γ −1(v′ − v) · q

+ γ −2|v′ − v|2)f (v′)M1

(
w − γ

γ
(v′ − v)

)
dwdv′.

Now, keeping v and v′ fixed, we perform the change of variables w �→ w′ = w − γ

γ
(v′ − v),

which leads to

Q+f (v) = ε−2γ −3
∫

R3×R3
δ

(
2γ −1(v′ − v) ·

[
v − w′ − γ

γ
(v′ − v)

]
+ γ −2|v′ − v|2

)

× f (v′)M1(w
′)dw′dv′.

Writing w′ = v + λ1n + V2 with λ1 = (w′ − v) · n ∈ R, n = (v′ − v)/|v′ − v| and V2 · n = 0,
we get, noting that dw′ = dV2dλ1,

Q+f (v) = ε−2γ −3
∫

R3
f (v′)dv′

∫
R

dλ1

∫
V2·n=0

M1(v + V2 + λ1n)dV2

× δ(γ −2|v′ − v|2 − 2γ γ −2|v′ − v|2 − 2γ −1λ1|v′ − v|).
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Thanks to the change of variables λ1 �→ 2γ −1|v′ − v|λ1, one can evaluate the Dirac mass as
∫

R

δ(γ −2|v′ − v|2 − 2γ γ −2|v′ − v|2 − 2γ −1λ1|v′ − v|)M1(v + V2 + λ1n)dλ1

= γ

2|v′ − v|M1

(
v + V2 + 1 − 2γ

2γ
(v′ − v)

)

where we used that n = (v′ − v)/|v′ − v|. Consequently,

Q+f (v) = 1

2ε2γ 2

∫
R3

k(v, v′)f (v′)dv′

where

k(v, v′) = 1

|v − v′|
∫

V2·(v′−v)=0
M1

(
v + V2 + 1 − 2γ

2γ
(v′ − v)

)
dV2.

It remains now to explicit k(v, v′). We will use the approach of [15]. Let us assume v, v′ to
be fixed. Let P be the hyperplan orthogonal to (v′ − v). For any V2 ∈ P, set

z = v + 1 − 2γ

2γ
(v′ − v) + V2 − u1

so that

k(v, v′) =
(

�1

π

)3/2

|v − v′|−1
∫

V2∈P

exp{−�1z
2}dV2

where �1 = m1
2ϑ1

. Denoting for simplicity u = v+v′
2 − u1 and μ = − 1−2γ

γ
, one has

z2 =
(

u + v − v′

2
+ μ

2
(v − v′) + V2

)2

= |u + V2|2 + (1 + μ)2

4
|v − v′|2 + 1 + μ

2
(|v − u1|2 − |v′ − u1|2)

where we used the fact that V2 is orthogonal to (v′ − v). Splitting u as

u = u0 + u⊥

where u0 is parallel to v − v′ while u⊥ is orthogonal to v − v′ (i.e. u⊥ ∈ P), we see that

|u + V2|2 = |u0|2 + |u⊥ + V2|2 and |u0|2 = [|v − u1|2 − |v′ − u1|2]2

4|v − v′|2 ,

so that

k(v, v′) = |v − v′|−1

(
�1

π

)3/2 ∫
P

exp(−�1|u⊥ + V2|2)dV2

× exp

{
−�1

4

(
(1 + μ)2|v − v′|2 + 2(1 + μ)(|v − u1|2 − |v′ − u1|2)

+ [|v − u1|2 − |v′ − u1|2]2

|v − v′|2
)}

.
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Finally, since u⊥ ∈ P,

∫
P

exp(−�1|u⊥ + V2|2)dV2 =
∫

R2
exp(−�1x

2)dx = π

�1
,

one obtains the desired expression for k(v, v′). �

The very important fact to be noticed out is that the expression of k(v, v′) is very simi-
lar to that one obtains in the elastic case [15], the only change being the expression of the
constant μ. In particular, in the elastic case ε = 1, we recover the expression of the ker-
nel obtained in [6] for particles of same mass (i.e. m = m1) and in [15] for particles with
different masses.

Another fundamental property of the kernel k(v, v′) is that it allows us to recover the
steady state of Q through some microscopic detailed balance law. Precisely,

Theorem 2.2 With the notations of the Theorem 2.1, the following detailed balance law:

k(v, v′) exp

{
− m1

2ϑ1
(1 + μ)(v′ − u1)

2

}
= k(v′, v) exp

{
− m1

2ϑ1
(1 + μ)(v − u1)

2

}
, (2.3)

holds for any v, v′ ∈ R
3. As a consequence, the Maxwellian velocity distribution:

M(v) =
(

m

2πϑ#

)3/2

exp

{
−m(v − u1)

2

2ϑ#

}
v ∈ R

3,

with ϑ# = (1−α)(1−β)

1−α(1−β)
ϑ1 is the unique equilibrium state of Q with unit mass.

Proof According to (2.2), it is easily seen that

k(v′, v) = k(v, v′) exp

{
m1

2ϑ1
(1 + μ)(|v − u1|2 − |v′ − u1|2)

}
, v, v′ ∈ R

3

which is nothing but (2.3). Now, writing m1
2ϑ1

(1 + μ) = m

2ϑ� , straightforward calculations

lead to the desired expression for the equilibrium temperature ϑ�. The fact that M is an
equilibrium solution with unit mass follows then from the fact that

Q(M)(v) =
∫

R3
k(v, v′)M(v′)dv′ − σ(v)M(v) =

∫
R3

[k(v, v′)M(v′) − k(v′, v)M(v)]dv′

and from the detailed balance law (2.3). To prove that the steady state is unique, we adopt
the strategy of [21, Theorem 1]. Precisely, consider the equation

σ(v)f (v) = Q+f (v), ∀v ∈ R
3 (2.4)

which admits at least the solution f = M. Since σ(v) does not vanish, any solution f to
(2.4) is such that

f (v) = 1

σ(v)
Q+(f )(v), ∀v ∈ R

3.
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Since Q+ is an integral operator with nonnegative kernel, it is clear that σ(v)|f (v)| ≤
Q+(|f |)(v) for any v ∈ R

3. Now, from the positivity of both σ and Q+, one sees that the
conservation of mass (1.5) reads:

‖σf ‖X = ‖σ |f | ‖X = ‖Q+(|f |)‖X.

This shows that, actually, |Q+(f )(v)| = σ(v)|f (v)| = Q+(|f |)(v) for any v ∈ R
3. Again,

since Q+ is a positive operator, one obtains that

f = ±|f |.
Now, assume that (2.4) admits two solutions f1, f2 with

∫
R3 f1(v)dv = ∫

R3 f2(v)dv = 1.
Then, f1 − f2 is again a solution to (2.4) so that, f1 − f2 = ±|f1 − f2|. Thus,

±
∫

R3
|f1(v) − f2(v)|dv =

∫
R3

f1(v)dv −
∫

R3
f2(v)dv = 0

and the uniqueness follows. �

The above result allows to derive the explicit expression of the collision frequency σ(v):

Corollary 2.3 The collision frequency σ(v) for dissipative hard-spheres interactions is
given by

σ(v) = 2π

(2 + μ)2

√
m1

2πϑ1

{
4ϑ1

m1
exp

(
− m1

2ϑ1
|v − u1|2

)

+
(

2|v − u1| + 2ϑ1

m1|v − u1|
)∫ 2|v−u1|

0
exp

(
− m1

8ϑ1
t2

)
dt

}
. (2.5)

Consequently, there exist positive constants ν0, ν1 such that

ν0(1 + |v − u1|) ≤ σ(v) ≤ ν1(1 + |v − u1|), ∀v ∈ R
3.

Proof Set C =
√

m1
2πϑ1

. Noting that σ(v) = ∫
R3 k(v′, v)dv′ for any v ∈ R

3, one has, with the

change of variable z = v′ − v, in a polar coordinate system in which v lies on the third axis

σ(v) = C

∫
R3

exp

{
− m1

8ϑ1

(
(1 + μ)|z| − |v − u1|2 − |z + v − u1|2

|z|
)2}

|z|−1dz

= 2πC

∫ ∞

0
d�

∫ π

0
� exp

{
− m1

8ϑ1
((2 + μ)� + 2|v − u1| cosϕ)2

}
sinϕ dϕ.

The computation of this last integral leads to the desired expression for σ(v). The estimates
are then straightforward [15]. �

3 Application to the Boltzmann Operator in L2(M−1)

We investigate in this section the properties of the Boltzmann operator Q in the weighted
space

H = L2(R3;M−1(v)dv).
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We shall denote by 〈·, ·〉H the inner product in H. The introduction of such an Hilbert
space setting is motivated by the application of the H -Theorem 1.3 with the convex func-
tion Φ(x) = (x − 1)2. In this case, one sees that, if f0 ≥ 0 is a space homogeneous initial
distribution such that

∫
R3

f0(v)dv = 1,

∫
R3

|f0(v)|2M−1(v)dv < ∞,

then any solution f (t, v) to the space homogeneous equation

∂tf (t, v) = Q(f )(t, v), f (0, v) = f0(v) ∈ H, (3.1)

satisfies the following estimate:

d

dt

∫
R3

|f (t, v) −M(v)|2M(v)−1dv ≤ 0, t ≥ 0.

In other words, the mapping t �−→ ‖f (t, ·) −M‖H is nonincreasing. For these reasons, the
study of the properties of the collision operator Q in H is of particular relevance for the
asymptotic behavior of the solution to

∂tf (t, v) = Q(f )(t, v), f (0, v) ∈ H. (3.2)

The material of this section borrows some techniques already employed by T. Carleman [6]
in the study of non-dissipative gas dynamics (see also, e.g. [7] or [12] for similar results in
the context of the linearized Boltzmann equation). Let L be the realization of the operator Q

in H, i.e.

D(L) =
{
f ∈ H;

∫
R

|f (v)|2σ 2(v)M−1(v)dv < ∞
}

and, for any f ∈ D(L), Lf (v) = Q(f )(v) is given by (1.2). As previously, one can use the
following splitting of L as a gain operator and a loss (multiplication) operator, L = L+ −L−

with

L+(f )(v) =
∫

R3
k(v, v′)f (v′)dv′ and L−(f ) = σ(v)f (v), f ∈ D(L).

We shall show, as in the classical case, that L+ is actually a bounded operator in H. Precisely,
let J define the natural bijection operator from L2(R3, dv) to H:

{
J : L2(R3, dv) −→ H
f �−→ Jf (v) = M1/2(v)f (v).

It is clear that J is a bounded bijective operator whose inverse is given by

J−1g(v) = M−1/2(v)g(v) ∈ L2(R3, dv), ∀g ∈ H.

Now, let us define

G(v, v′) = M−1/2(v)k(v, v′)M1/2(v′), v, v′ ∈ R
3,
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i.e.

G(v, v′) =
(

m1

2πϑ1

)1/2

|v − v′|−1

× exp

{
− m1

8ϑ1

(
(1 + μ)2|v − v′|2 + (|v − u1|2 − |v′ − u1|2)2

|v − v′|2
)}

. (3.3)

From the detailed balance law (2.3), one easily checks that G(v, v′) = G(v′, v) for any
v, v′ ∈ R

3. Therefore, defining G as the integral operator in L2(R3, dv) with kernel G(v, v′),
i.e.

Gf (v) =
∫

R3
G(v, v′)f (v′)dv′,

one can prove the following:

Proposition 3.1 G is a bounded symmetric operator in L2(R3, dv) and L+ = JGJ−1. Con-
sequently, L+ is a bounded symmetric operator in H.

Proof It is clear that G is symmetric since G(v, v′) = G(v′, v). Now, to prove the bounded-
ness of G, one adopts a strategy already used in the non-dissipative case by T. Carleman [6,
p. 75] and shows easily that

C := sup
v∈R3

∫
R3

G(v, v′)dv′ < ∞.

Since G(·, ·) is symmetric, one also has supv′∈R3

∫
R3 G(v, v′)dv = C < ∞. Denoting by

〈·, ·〉 the usual inner product of L2(R3, dv), one deduces from Cauchy–Schwarz identity,

〈Gf,g〉 ≤ C

2

(∫
R3

|f (v)|2dv +
∫

R3
|g(v′)|2dv′

)
, ∀f,g ∈ L2(R3, dv),

which leads to the boundedness of G. Now, since G(v, v′) = M−1/2(v)k(v, v′)M1/2(v′) for
any v, v′ ∈ R

3, one gets easily that L+ = JGJ−1 and the conclusion follows. �

In Proposition 3.1, we proved that the gain operator L+ is bounded in H, i.e. L+ ∈ B(H).
Actually, we have much better and it is possible, as in the non-dissipative case, to prove that
L+ is a compact operator in H. Precisely, the following lemma is a direct consequence
of Theorem 2.1 and similar calculations valid for the non-dissipative case [6, p. 70–75].
However, we give a detailed proof of it since the known similar results by T. Carleman are
all dealing with the case m = m1 and ε = 1. It has to be checked that taking account the
parameters m �= m1 and ε < 1 does not lead to supplementary difficulty (see Remark 3.8
where the role of ε �= 1 does not allow to adapt mutatis mutandis a result valid in the elastic
case).

Lemma 3.2 For any 0 < p < 3 and any q ≥ 0, there exists C(p,q) > 0 such that

∫
R3

|G(v, v′)|p dv′

(1 + |v′ − u1|)q
≤ C(p,q)

(1 + |v − u1|)q+1
, ∀v ∈ R

3.
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Proof The proof is a technical generalization of a similar result due to T. Carleman [6] in
the classical case (i.e. when m = m1 and ε = 1). Let us fix 0 < p < 3 and q ≥ 0 and set

I (v) =
∫

R3
|G(v, v′)|p dv′

(1 + |v′ − u1|)q
.

Then, one sees easily that

I (v) = 2π

(
m1

2πϑ1

)p/2 ∫ π

0
sinϕdϕ

×
∫ ∞

0
�2−p

exp{−m1p

8ϑ1
((1 + μ)2�2 + (� + 2|v − u1| cosϕ)2)}

(1 + √
�2 + |v − u1|2 + 2�|v − u1| cosϕ)q

d�.

Note that, since 0 < p < 3,

sup
v∈R3

I (v) ≤ 4π

(
m1

2πϑ1

)p/2 ∫ ∞

0
�2−p exp

{
−m1p

8ϑ1
(1 + μ)2�2

}
d� < ∞. (3.4)

Performing the change of variable x = �/|v − u1| + 2 cosϕ, y = �/|v − u1|, one has
(x, y) ∈ Ω where

Ω = {(x, y) ∈ R
2; y > 0, |x − y| ≤ 2}

and

I (v) =
(

m1

2πϑ1

)p/2

π |v − u1|3−p

×
∫

Ω

exp

{
−m1p|v − u1|2

8ϑ1
((1 + μ)2y2 + x2)

}
dxdy

yp−2(1 + |v − u1|√1 + xy)q
.

We split Ω into Ω = Ω1 ∪ Ω2 where Ω1 is the half-ellipse

Ω1 = {(x, y) ∈ R
2 : y > 0, (1 + μ)2y2 + x2 < 1/4} while Ω2 = Ω \ Ω1.

Note that, since 1 + μ ≥ 1, one has Ω1 ⊂ Ω . One defines correspondingly I1(v) and I2(v)

as the above integral over Ω1 and Ω2 respectively. One notes first that, if (x, y) ∈ Ω1 then
xy > − 1

8(1+μ)
so that

I1(v) ≤
(

m1

2πϑ1

)p/2
π |v − u1|3−p

(1 + a|v − u1|)q

∫
Ω1

exp

{
−m1p|v − u1|2

8ϑ1
((1 + μ)2y2 + x2)

}
dxdy

yp−2

where a =
√

1 − 1
8(1+μ)

, 0 < a < 1. Letting R = (
m1p

8ϑ1
)1/2 and setting t = R|v − u1|x, u =

R(1 + μ)|v − u1|y, it is easy to check that −R|v − u1|/2 ≤ t ≤ R|v − u1|/2, while 0 ≤ u ≤
R|v − u1|/2, so that

I1(v) ≤
(

m1

2πϑ1

)p/2
πRp−4(1 + μ)p−3

|v − u1|(1 + a|v − u1|)q

∫
R

dt

∫ ∞

0

exp{−(t2 + u2)}
up−2

du.
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Thus, there exists a constant C1(p, q) > 0 such that

I1(v) ≤ C1(p, q)

|v − u1|(1 + a|v − u1|)q
, ∀v ∈ R

3. (3.5)

Let us now deal with I2(v). Arguing as above,

I2(v) =
(

m1

2πϑ1

)p/2

π |v − u1|3−p

∫
Ω2

exp

{
−R2|v − u1|2

2
((1 + μ)2y2 + x2)

}

× exp{−R2|v−u1|2
2 ((1 + μ)2y2 + x2)}

yp−2(1 + |v − u1|√1 + xy)q
dxdy.

Clearly, since (1 + μ)2y2 + x2 > 1/4 for any (x, y) ∈ Ω2, then

I2(v) ≤
(

m1

2πϑ1

)p/2

π |v − u1|3−p

∫
Ω2

exp

(
−R2|v − u1|2

8

)

× exp

{
−R2|v − u1|2

2
((1 + μ)2y2 + x2)

}
dxdy

yp−2

≤
(

m1

2πϑ1

)p/2

π |v − u1|3−p exp

(
−R2|v − u1|2

8

)

×
∫ ∞

0
exp

(
−R2|v − u1|2

2
(1 + μ)2y2

)
dy

yp−2

∫ y+2

y−2
dx.

Hence, there is some constant C2(p, q) such that

I2(v) ≤ C2(p, q) exp

(
−R2|v − u1|2

8

)
, v ∈ R

3. (3.6)

Combining (3.5) and (3.6), one sees that

I (v) ≤ C1(p, q)

|v − u1|(1 + a|v − u1|)q
+ C2(p, q) exp

(
−R2|v − u1|2

8

)
, v ∈ R

3.

According to (3.4), lim sup|v−u1|→0 I (v) < ∞, from which we get the conclusion. �

Remark 3.3 Note that the above Lemma can be extended to more general collision kernels
(including long-range interactions) following the lines of the recent results [18] dealing with
the elastic case.

From the above Lemma, one has the following compactness result:

Proposition 3.4 G is compact in L2(R3, dv). Consequently, L+ is a compact operator in H.

Proof Applying arguments already used in [6], the above Lemma implies that the third
iterate of G is an Hilbert–Schmidt operator in L2(R3, dv), i.e. the kernel of G3 is square
summable over R

3 × R
3. The compactness of G follows then from standard arguments and

that of L+ is deduced from the identity L+ = JGJ−1 (see Proposition 3.1). �
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The following, which generalizes a known result from classical kinetic theory, proves
that L is a negative symmetric operator in H:

Proposition 3.5 The operator (L,D(L)) is a negative self-adjoint operator of H. Precisely,

〈Lf,f 〉H = −1

2

∫
R3×R3

k(v, v′)M(v′)[M−1(v)f (v) − f (v′)M−1(v′)]2dvdv′ ≤ 0

for any f ∈ D(L).

Proof The fact that (L,D(L)) is self-adjoint is a direct consequence of Proposition 3.1 since
L− is clearly symmetric. Now, it is a classical feature, from the detailed balance law (2.3),
that

〈Lf,f 〉H =
∫

R3×R3
k(v, v′)M(v′)[M−1(v′)f (v′) − f (v)M−1(v)]f (v)M−1(v)dvdv′.

Exchanging v and v′ and using again the detailed balance law (2.3), one sees that

〈Lf,f 〉H =
∫

R3×R3
k(v, v′)M(v′)[M−1(v)f (v) − f (v′)M−1(v′)]f (v′)M−1(v′)dvdv′

so that, taking the mean of the two quantities,

〈Lf,f 〉H = −1

2

∫
R3×R3

k(v, v′)M(v′)[M−1(v)f (v) − f (v′)M−1(v′)]2dvdv′ ≤ 0

which ends the proof. �

Remark 3.6 From the above result, the spectrum S(L) of L lies in R−, i.e. S(L) ⊂
(−∞,0]. It is clear that λ = 0 lies in S(L). Precisely 0 is a simple eigenvalue of L since M
is the unique (up to a multiplication factor) steady state of L.

Combining the above results with Proposition 3.1 leads to a precise description of the
spectrum of L:

Theorem 3.7 The spectrum of L (as an operator in H) consists of the spectrum of −L−
and of, at most, eigenvalues of finite multiplicities. Precisely, setting ν0 = infv∈R3 σ(v) > 0,

S(L) = {λ ∈ R; λ ≤ −ν0} ∪ {λn; n ∈ I }
where I ⊂ N and (λn)n is a decreasing sequence of real eigenvalues of L with finite alge-
braic multiplicities: λ0 = 0 > λ1 > λ2 · · · > λn > · · · , which unique possible cluster point
is −ν0.

Proof From Proposition 3.4, L is nothing but a compact perturbation of the loss operator
−L−. Hence, Weyl’s Theorem asserts that S(L)\S(−L−) consists of, at most, eigenvalues
of finite algebraic multiplicities which unique possible cluster point is sup{λ,λ ∈ S(−L−)}.
In particular, up to a rearrangement, one can write S(L) \ S(−L−) = {λn, n ∈ I } with
λ0 > λ1 > λ2 · · · > λn ≥ · · · . We already saw that λ0 = 0 since M is a steady state of Q and
M ∈ H. Now, since −L− is a multiplication operator by the collision frequency −σ(·), its
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Fig. 1 Spectrum of the collision
operator Q in H

spectrum S(−L−) is given by the essential range Ress(−σ(·)) of the collision frequency.
From Corollary 2.5, one sees without difficulty that

Ress(−σ(·)) = (−∞,−ν0]

where ν0 = infv∈R3 σ(v) = lim|v−u1|→0 σ(v) = 8
(2+μ)2

√
2πϑ1
m1

is positive. �

Remark 3.8 We conjecture that, as it is the case for elastic interactions [13], the set of
eigenvalues lying in (−ν0,0) is infinite. However, the technical generalization of the proof
of [13] appears to be non trivial because of the non zero parameter μ. We thank anyway an
anonymous referee for having pointed to us the reference [13].

The above result provides a complete picture of the spectrum of Q as an operator in H
(see Fig. 1) and shows, in particular, the existence of a positive spectral gap |λ1| of L. Note
that such a result, combined with Proposition 3.5, has important consequence on the entropy
production, since it can be shown in an easy way that the H -Theorem reads as

d

dt
‖f (t) −M‖2

H = 〈Lf (t), f (t)〉H.

Consequently, the Dirichlet form B(f ) = 〈Lf,f 〉H plays the role of entropy-dissipation
functional and the existence of a spectral gap |λ1| is equivalent to the following coercivity
estimate for B(f ):

B(f ) ≥ −|λ1| ‖f ‖2
H ∀f ⊥ span(M).

One deduces easily the following corollary on the exponential trend towards equilibrium:

Corollary 3.9 Let f0(v) ∈ H and let f (t, v) be the unique solution to the linear homoge-
neous Boltzmann equation (3.2). Then, there is some constant C ≥ 0 such that

‖f (t, ·) −M‖H ≤ C exp(−|λ1|t)‖f0 −M‖H, for any t ≥ 0,

where 0 < |λ1| ≤ ν0 is provided by Theorem 3.7.

We refer the reader to [19] for details on the matter, and in particular, for an explicit
estimate of the spectral gap |λ1|.
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4 Application to the Honest Solutions of the Boltzmann Equation

4.1 Conservative Solutions

We are interested in this section in applying the result of the previous section to prove the
existence of honest solutions to the linear Boltzmann equation for dissipative hard-spheres

∂tf (x, v, t) + v · ∇xf (x, v, t) = Q(f )(x, v, t), (4.1)

with initial condition

f (x, v,0) = f0(x, v) ∈ L1(R3 × R
3, dx ⊗ dv),

where the collision operator Q is given by (1.2). Recall that the streaming operator T0 is
defined by

D(T0) = {f ∈ X , v · ∇xf ∈ X }, T0f = −v · ∇xf

where X = L1(R3 × R
3, dx ⊗ dv). One can define then the multiplication operator Σ by

D(Σ) = {f ∈ X , σf ∈ X }, Σf (x, v) = −σ(v)f (x, v)

where, as in the previous section, σ(v) is the collision frequency corresponding to dissipa-
tive hard spheres interactions and given by (2.5). The following generation result is well-
known [3].

Theorem 4.1 The operator T0 generates a C0-semigroup of isometries (U(t))t≥0 of X given
by:

U(t)f (x, v) = f (x − tv, v), t ≥ 0.

The operator A = T0 + Σ with domain D(A) = D(T0) ∩ D(Σ) is the generator of a con-
tractions C0-semigroup (V (t))t≥0 given by

V (t)f (x, v) = exp(−σ(v)t)f (x − tv, v), t ≥ 0.

Let us define now K as the gain operator Q+ endowed with the domain of A:

D(K) = D(A), Kf (x, v) = Q+(f )(x, v) = ε−2
∫

R3×S2
|q · n|f (x, v�)M1(w�)dwdn.

It is clear from (1.5) that, for any f ∈ D(K),

∫
R3×R3

(Af + Kf )dxdv = 0, (4.2)

while Kf ≥ 0 for any f ∈ D(K), f ≥ 0. Then, the following generation result is a direct
consequence of [1, 25]:

Theorem 4.2 There exists a positive contractions semigroup (Z(t))t≥0 in X whose genera-
tor G is an extension of A+K . Moreover, (Z(t))t≥0 is minimal, i.e. if (T (t))t≥0 is a positive
C0-semigroup generated by an extension of A + K , then T (t) ≥ Z(t) for any t ≥ 0.
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The natural question is now to determine whether the “formal” mass conservation iden-
tity (1.6) can be made rigorous. Namely, one aims to prove that, for any nonnegative f ∈ X ,
the following holds:

‖Z(t)f ‖ = ‖f ‖, ∀t > 0.

The important point to be noticed is the following. If G = A + K , then any function ϕ ∈
D(G) can be approximated by a sequence (ϕn)n ⊂ D(A + K) = D(A) such that ϕn → ϕ

and (A + K)ϕn → Gϕ as n → ∞. In particular, (4.2) implies that

∫
R3×R3

Gϕ dxdv = lim
n→∞

∫
R3×R3

(A + K)ϕndxdv = 0, ∀ϕ ∈ D(G).

Now, for any given initial datum f0 ∈ D(G), f0 ≥ 0, the solution f (t) = Z(t)f0 of (4.1) is
such that

d

dt
‖f (t)‖ =

∫
R3×R3

d

dt
f (t)dxdv =

∫
R3×R3

Gf (t)dxdv = 0,

i.e.

‖f (t)‖ = ‖f0‖, ∀t ≥ 0.

This means that, if G = A + K , then the solutions to the linear Boltzmann equation (4.1) are
conservative. On the other hand, if G is a larger extension of A + K than A + K , then there
may be a loss of particles in the evolution (see [3] for the matter as well as [2] for examples of
transport equation for which such a loss of particles occurs because of boundary conditions).
Precisely, if G �= A + K then there exists f0 ∈ X , f0 ≥ 0 such that

‖Z(t)f0‖ < ‖f0‖ for some t > 0.

This shows that the determination of the domain D(G) of G is of primary importance in
the study of the Boltzmann equation. This is the main concern of the so-called substochastic
perturbation theory of C0-semigroups [3].

We point out that the question of the honesty of the semigroup governing the Boltzmann
equation also arises in the study of the space-homogeneous version of the latter equation.
Indeed, it is the unboundedness of the collision frequency (and consequently that of whole
collision operator Q) that may give rise to dishonest solutions to the Boltzmann equation.
Actually, to prove the honesty of the C0-semigroup (Z(t))t≥0, we will adopt the strategy
developed first in [1] and systematized in [3]. More precisely, we will show that the gain
operator K fulfills the assumption of [1]:

Proposition 4.3 There exists C > 0 such that, for any fixed � > 0,

ess sup
|v−u1|≤�

∫
|v′−u1|≥�

k(v′, v)dv′ ≤ C.

Proof Since the kernel k(v, v′) differs from the corresponding one for classical gas, except
from numerical constants, one can apply mutatis mutandis the technical calculations of [1,
Sect. 4.1] (see also [3, p. 329–330]) to get the desired estimate. �

As a consequence, one deduces immediately from [1], the main result of this section:
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Theorem 4.4 The generator G of the minimal semigroup (Z(t))t≥0 is given by

G = A + K.

In particular, the C0-semigroup (Z(t))t≥0 is honest and
∫

R3×R3
Z(t)f (x, v)dxdv =

∫
R3×R3

f (x, v)dxdv for any f ∈ X and any t ≥ 0.

4.2 Consequence on the Entropy Production

As a direct application of the above result (Theorem 4.4), we give a direct rigorous proof of
the linear H -Theorem of [14]. In order to stay in the formalism of [14], we shall restrict our-
selves to the space-homogeneous case. Precisely, let Y denote the set of functions depending
only on the velocity and integrable with respect to velocities:

Y = L1(R3, dv),

equipped with its natural norm ‖ · ‖Y . For any nonnegative f and g in Y , we define the
information of f with respect to g by

I(f |g) =
∫

R3
(f (v) lnf (v) − f (v) lng(v))dv

with the conventions 0 ln 0 = 0 and x ln 0 = −∞ for any x > 0. This means that the infor-
mation is nothing but the entropy functional HΦ for the particular choice of Φ(s) = s ln s.
One recalls the main result of [24]:

Theorem 4.5 Let U be a stochastic operator of Y , i.e. U is a positive operator such that
‖Uf ‖Y = ‖f ‖Y for any f ∈ Y , f ≥ 0. Then,

I(Uf |Ug) ≤ I(f |g)

for any nonnegative f , g in Y . In particular, if g ∈ Y is a nonnegative fixed point of U then,

I(Uf |g) ≤ I(f |g), ∀f ∈ Y, f ≥ 0.

According to the results of the previous section, it is not difficult to see that the restriction
of (Z(t))t≥0 to Y is a C0-semigroup of stochastic operators of Y . Since the unique equilib-
rium state M ∈ Y is space independent, one sees that (T1 + K)M = 0 and, in particular,

ZY (t)M = M, ∀t ≥ 0.

Combining this with Theorem 4.5, one obtains a rigorous and direct proof of the H -Theorem
[14, Theorem 5.1]:

Theorem 4.6 Let f0 ∈ Y be a given nonnegative (space homogeneous) distribution function
with unit mass, i.e. ‖f0‖Y = 1. Assume that I(f0|M) < ∞, then

d

dt
I(f (t)|M) ≤ 0 (t ≥ 0),

where f (t) = ZY (t)f0 = Z(t)f0 is the unique solution to (4.1) with f (0) = f0.
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Remark 4.7 Note that, once the conservativity of the solution to the Boltzmann equation
asserted by Theorem 4.4, the above H -Theorem can be proved by usual standard method of
kinetic theory. However, we insist on the fact that such standard proofs require the solution
f (t, v) to be conservative and, in some sense, the use of the substochastic semigroup theory.
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